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E. J. Pitcher (LANL)

I

Introduction
Recent advances in accelerator technology have led to the practical realization of high-power
beams. When coupled with high-power spallation target technology, these systems offer a more
environmentally-friendly method of producing neutrons than reactors. We will focus our
attention here on the application of spallation technology to the Accelerator Production of

Tritium (APT).

What is spallation, anyway? - Spallation refers to nuclear reactions that occur when energetic
subatomic particles (such as protons in an accelerator beam) interact with an atomic nucleus.'
For the APT application, we are looking at a composite tungsten/lead target, and therefore, the
nuclei of tungsten and lead atoms. Spallation takes place in two stages. In the first stage where
the proton interacts with the target, the incident particle creates a high-energy cascade inside the
nucleus. High-energy (>20 MeV) “secondary” particles and low-energy (<20 MeV) “cascade”
particles escape the nucleus, leaving the nucleus in a highly-excited state. In the second or
evaporation phase, the excited nucleus relaxes, primarily by emitting low-energy “evaporation”
neutrons. For heavier nuclei (such as lead), high-energy fission can also occur, competing with
evaporation. For lead, the dominant mode of nuclear deexcitation is by evaporation rather than

high-energy fission. Tungsten can also undergo high-energy fission, but to a lessor extent than

lead.




Spallation Target Technology
Spallation Target Design - Maximizing the total low-energy neutron production is an important
aspect of spallation target design—however, it is only part of the story. Once low-energy
neutrons are produced inside the target, they must “leak” from the target before they can be used.
Maximizing leakage and minimizing parasitic neutron absorption in the target are other crucial
aspects of spallation target design. The main factors controlling neutron leakage are parasitic
absorption in the target material and target geometry. Figure 1 shows various figures of merit
(neutron production, leakage, and absorption) for solid cylinders of lead and tungsten. Notice
that at large target diameters, the lead target leaks more neutrons than the tungsten target, but
tungsten is a better neutron producer. For tungsten (and any other neutron absorber), the
detrimental parasitic absorption effect is improved by splitting the target."” The use of a split
target also helps mitigate excessive neutron leakage from the front surface of the target, which is

desirable since these neutrons head back down the beamline and are lost.

Neutronic Performance - Target neutronic performance is a function of the energy and type of
the incident particle as well as target material and geometry. Proton for proton, production of
neutrons from a thick, heavy-metal target increases with beam energy. The low-energy neutron
production rate per unit beam power, however, saturates at about 1.5 GeV.? Thus, factors other
than the neutronic production rate drive a decision to go above this beam energy (e.g., the
accelerator design). Engineering realities such as proton beam windows, target canister material,
target dilution by cooling material, and the profile and size of the incident particle beam also
affect the neutronic performance and design of a target. These practical matters must be

explicitly dealt with in a realistic situation. Also, the neutronic interaction of a target with its

immediate environment affects the overall performance of a spallation target system.




Tritium Production - APT *He Target/Blanket Concept
One example of an accelerator-driven target system is the APT *He target/blanket concept.* The
neutronic performance of the APT target/blanket assembly is calculated with the LAHET Code
System.” The input model for physics calculations contains the essential features of geometry
and materials. The APT *He concept takes advantage of the large thermal cross section

(~5300 barns) for the reaction

3He+n—>p+T

to convert He to tritium. Alternatively, °Li could readily be used as the feed material with

nearly equal neutronic efficiency as that of the *He system.

As noted in Fig. 1, low-energy neutron production from a spallation reaction increases with
target diameter. One way to achieve “infinite” target neutron production for a “practical”
spallation target with cooling (which enhances parasitic absorption in the target material) is to
introduce *He into the target to compete with parasitic absorption in the target at large target

sizes as illustrated in Fig. 2.

Figure 3 illustrates the various components of the APT target/blanket design. The proton beam
strikes the tungsten target elements in the central target region (the tungsten source array),
producing neutrons through the spallation process. The backstop lead region ranges out the
primary protons and catches any small-angle scattered protons from the central target region,

producing spallation neutrons. The lateral high- and low-power lead zones are integral parts of

the *He target system; high-energy protons and neutrons escaping the central target zone can
strike the lead and produce additional spallation neutrons. The *He layer between the tungsten

central target zone and the lead region, called the decoupler, neutronically decouples the central

tungsten region from the lead target/blanket zone and produces tritium. Tritium is also produced




in *He contained in the lead regions. The *He target/blanket system is an efficient way to make

tritium utilizing an accelerator and the spallation process.
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Fig. 2. Effect of H,O vs. D,O cooling of the lead target zone with *He for a homogeneous
mixture of lead *He and coolant. The presence of *He opens the possibility of approaching

“infinite-target” neutron production. For a homogeneous system, H,O is a more effective

coolant than D,O for the lead target zone.
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